首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
  国内免费   3篇
化学   6篇
晶体学   1篇
力学   22篇
数学   12篇
物理学   17篇
  2023年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   8篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
An n-unit system provisioned with a single warm standby is investigated. The individual units are subject to repairable failures, while the entire system is subject to a nonrepairable failure at some finite but random time in the future. System performance measures for systems observed over a time interval of random duration are introduced. Two models to compute these system performance measures, one employing a policy of block replacement, and the other without a block replacement policy, are developed. Distributional assumptions involving distributions of phase type introduce matrix Laplace transformations into the calculations of the performance measures. It is shown that these measures are easily carried out on a laptop computer using Microsoft Excel. A simple economic model is used to illustrate how the performance measures may be used to determine optimal economic design specifications for the warm standby.  相似文献   
2.
目的 评价低渗温热腹腔灌注化疗治疗恶性腹腔积液的疗效及不良反应。方法 行腹腔穿刺置单腔中心静脉导管,外接引流袋,记录腹水引流量,当日排放腹水1 500ml 后,予加热至43~45℃注射用双蒸馏水1 000ml 行腹腔灌注,次日重复放液1 500ml,再予加热至43~45℃注射用双蒸馏水1 000ml 行腹腔灌注,并于灌注后腹腔注入顺铂60mg、氟尿嘧啶500mg 并封管,治疗期间常规给予简单水化、对症止吐等治疗。结果 31 例恶性腹腔积液患者共完成低渗温热腹腔灌注化疗42 周期,完全缓解7例,部分缓解15,稳定5 例,进展4 例,完全缓解+ 部分缓解占70.97%。中位进展时间(TTP)3.6个月(2~9 个月), 中位生存期(MST)5.6 个月。毒副反应以消化道反应为主。结论 低渗温热腹腔灌注化疗治疗恶性腹腔积,在延长患者的生存期、提高生活质量方面效果较好,临床上可推荐应用。  相似文献   
3.
4.
We present a simulation of absorption of femtosecond laser pulses by a copper target. The modeling involved thermodynamic functions calculated by using a first-principles full-potential linear muffin-tin orbital method and chemical-picture-based model of dense plasma utilizing a superconfiguration approach. The results of the simulation are compared to experimental and other theoretical data. The role of the electron-ion energy exchange is analyzed and further work on detailed improvement of the presented theoretical model is discussed.  相似文献   
5.
The Variational Average-Atom in Quantum Plasmas (VAAQP) code is based on a fully variational theory of dense plasmas in equilibrium in which the neutrality of the Wigner-Seitz ion sphere is not required, contrary to the Inferno model. We report on some recent progress in the VAAQP model and numerical code. Three important points of the virial theorem derivation are emphasized and explained. The virial theorem is also used as an important tool allowing us to check the formulas and numerical methods used in the code. Applications of the VAAQP code are shown using as an example the equation-of-state of beryllium in the warm dense matter regime. Comparisons with the Inferno model, and with available experimental data on the principal Hugoniot are also presented.  相似文献   
6.
We demonstrate experimentally, perhaps for the first time, the existence of low-temperature multistage diffusion flames of n-alkanes. Multistage diffusion flames of n-heptane, n-decane, and n-dodecane are established in an atmospheric counterflow burner. Planar laser-induced fluorescence, chemiluminescence, and thermometry are used to probe the structures of such flames. In the first flame zone, the majority of the fuel is partially oxidized via low-temperature peroxy chemistry. In the second flame zone, the intermediate species produced are further oxidized via intermediate-temperature chemistry. The two stages of the flame are coupled such that significant fuel and oxidizer leakage occur, respectively, from the first and second reaction zones. The fuel is then further consumed, in the second stage, after the radical pool is replenished by the oxidation of the intermediates. The structure of the n-alkane multistage flame is found to be consistent with that previously observed for acyclic ethers. Owing to the different classes of temperature-dependent chemistries dominating the first and second stages, the reaction zone structure of multistage diffusion flames is dramatically influenced by the reactant concentrations and flame temperatures. The first stage is relatively favored at lower temperatures whereas the second stage is favored at elevated temperatures. Moreover, near extinction where the flame temperature is low, the multistage flame dynamics are controlled by the first oxidation stage, governed by peroxy chemistry, whereas the second oxidation stage, governed by intermediate chemistry, is dominant near high-temperature ignition conditions. Finally, by doping the oxidizer with ozone, we demonstrate the role of ozone doping on the multistage flame structure and the existence of a separate low-temperature ozone-assisted burning mode.  相似文献   
7.
Transient, isolated n-alkane droplet combustion is simulated at elevated pressure for helium-diluent substituted-air mixtures. We report the presence of unique quasi-steady, three-stage burning behavior of large sphero-symmetric n-alkane droplets at these elevated pressures and helium substituted ambient fractions. Upon initiation of reaction, hot-flame diffusive burning of large droplets is initiated that radiatively extinguishes to establish cool flame burning conditions in nitrogen/oxygen “air” at atmospheric and elevated pressures. However, at elevated pressure and moderate helium substitution for nitrogen (XHe?>?20%), the initiated cool flame burning proceeds through two distinct, quasi-steady-state, cool flame burning conditions. The classical “Hot flame” (~1500?K) radiatively extinguishes into a “Warm flame” burning mode at a moderate maximum reaction zone temperature (~ 970?K), followed by a transition to a lower temperature (~765?K), quasi-steady “Cool flame” burning condition. The reaction zone (“flame”) temperatures are associated with distinctly different yields in intermediate reaction products within the reaction zones and surrounding near-field, and the flame-standoff ratios characterizing each burning mode progressively decrease. The presence of all three stages first appears with helium substitution near 20%, and the duration of each stage is observed to be strongly dependent on helium substitutions level between 20–60%. For helium substitution greater than 60%, the hot flame extinction is followed by only the lower temperature cool flame burning mode. In addition to the strong coupling between the diffusive loss of both energy and species and the slowly evolving degenerate branching in the low and negative temperature coefficient (NTC) kinetic regimes, the competition between the low-temperature chain branching and intermediate-temperature chain termination reactions control the “Warm” and “Cool” flame quasi-steady conditions and transitioning dynamics. Experiments onboard the International Space Station with n-dodecane droplets confirm the existence of these combustion characteristics and predictions agree favorably with these observations.  相似文献   
8.
9.
We report the experimental evidence for creation of Warm Dense Matter (WDM) in ultrafast laser-induced micro-explosion inside a sapphire (Al2O3) crystal. We show that the WDM can be formed by a 100 nJ fs-pulse if the following conditions are satisfied: (1) the laser pulse is tightly focused to inside of the bulk of transparent material so the intensity at focus is two orders of magnitude higher than the optical breakdown threshold; (2) the pulse duration is shorter than the electron-ion energy exchange time; and, (3) the absorbed energy density is above the Young’s modulus for the material studied. The empty void created inside a sapphire crystal surrounded by a shell of compressed material provides the direct evidence of the maximum pressure above the Young’s modulus of sapphire (∼400 GPa). Synchrotron X-ray diffraction (XRD) analysis of the shell revealed the presence of novel super-dense bcc-Al crystalline phase predicted at pressures above ∼380 GPa theoretically, which has never been observed experimentally before neither in nature in laboratory experiments. These results show that confined micro-explosion induced by tightly focussed fs-laser inside a transparent solid opens new routes for synthesis of new materials and study of WDM at a laboratory bench-top.  相似文献   
10.
We present measurements of the changes in the microscopic structure of graphite in a laser-driven shock experiment with X-ray scattering. Laser radiation with intensities of ∼2 × 1013 W/cm2 compressed the carbon samples by a factor of two reaching pressures of ∼90 GPa. Due to the change of the crystalline structure the scattered signals of the probe radiation were modified significantly in intensity and spectral composition compared to the scattering on cold samples. It is shown that the elastic scattering on tightly bound electrons increases strongly due to the phase transition whereas the inelastic scattering on weakly bound electrons remains nearly unchanged for the chosen geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号